Q17
$P\left(c t, \frac{c}{t}\right)$ lies on the rectangular hyperbola $x y=c^{2}$. The normal at P meets the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ at Q and R. Show that P is the midpoint of $Q R$.

Solution:

$\frac{d y}{d t}=-\frac{c}{t^{2}}, \quad \frac{d x}{d t}=c, \quad \because \frac{d y}{d x}=-\frac{1}{t^{2}}, \quad \therefore m_{N}=t^{2}$.
Normal: $\quad y-\frac{c}{t}=t^{2}(x-c t) . \quad y=t^{2} x-c t^{3}+\frac{c}{t}$.
Substitute into $x^{2}-y^{2}=a^{2}, \quad x^{2}-\left(t^{2} x-c t^{3}+\frac{c}{t}\right)^{2}-a^{2}=0$.
$x^{2}-\left(t^{4} x^{2}+c^{2} t^{6}+\frac{c^{2}}{t^{2}}-2 c t^{5} x+2 c t x-2 c^{2} t^{2}\right)-a^{2}=0 . \quad \ldots$

Let the coefficient of x^{2} be α, and $\alpha=1-t^{4}$.
Let the coefficient of x be β, and $\beta=2 c t^{5}-2 c t=2 c t\left(t^{4}-1\right)$.
Let the constant be γ.

The solution of (1) will be $\quad x=\frac{-\beta}{2 \alpha} \pm \frac{\sqrt{\beta^{2}-4 \alpha \gamma}}{2 \alpha}$. which is Q and R.
The midpoint of Q and R has the x coordinate of $\quad \frac{-\beta}{2 \alpha}=\frac{2 c t\left(1-t^{4}\right)}{2\left(1-t^{4}\right)}=c t, \quad$ which is the x coordinate of P.

Since $Q R$ is a straight line, it follows that P is the midpoint of $Q R$. (QED)

